

ICAES

Corrosion Omnibus

Last update: 2014-03-19

Proprietary & Confidential

Corrosion Overview

- Process Conditions
- Inhibitors
- Corrosion Fundamentals
- 2012 coatings testing
- Experience
 - Sunapee
 - P:\SUNAPEE\Corrosion\20140311 SPEMetalsCorrosion.pptx
 - P:\R&D\WaterManagement\2014-02-03 Corrosion Update.pptx
 - 2012 corrosion testing: \\10.233.152.26\Projects\Demo\R&D\CorrosionPrevention\We eklyMeetings\20120730 CorrosionOverview.pptx

FYI

- Check notes for sources
- Wiki:

Corrosion Prevention – 13 March 2014

- **SustainX process environment**: compressor/expander using an air & water mixture
 - Air ranging pressures: 0-3000 psi
 - Pressure cycling:
 - In high pressure storage: ~hourly, 850-3000 psig
 - In reciprocating piston cylinders: ~2Hz, 0-250 psig & 250-3000 psig
 - Elevated & cycling temperatures
 - 10°C to 70°C
 - High temp (70°C) and high pressure in air storage
 - A variety of wetted materials and metals $\rightarrow \rightarrow \rightarrow$
 - Intermittent daily duty cycle several of hours of operation, several hours of stand-by
 - Water and air migrate together:
 - *Compressions* push both into high pressure storage (water quality measurement & control become difficult)
 - Expansions vent air and push water into atmospheric storage (water quality measurement & control are much easier)
 - Every compression breathes in fresh air → oxygen and CO₂ replenished every compression cycle (scavenging will be difficult)
 - Water is chemically treated, some surfaces are coated or treated
- Current corrosion prevention: water treatment
 - Quaker's Quintolubric 807-WP (water hydraulic fluid: corrosion inhibitor & biocide) w/ Stepan's BioSoft D-40 (surfactant)

Wetted Metals and Locations

- Piping A106 Gr B
- ANSI CS Flanges A105
- MPV A234 WPB
- Storage SA-372
- LPC Head 1050
- LPC Piston anodized Al 6061
- LPC chromed 1045
- HPC Head 4340
- HPC Piston 1050
- HPC Rod 1050
- Bore A106 C
- Valve Stem Titanium, hardened
- Valve Poppets Titanium
- Valve Seats 4340

Cortec Inhibitor Corrosion Rate Data

Electrochemical Study of the Effectiveness of VCI-646, VCI-649 and S-69 Tap Water

Material	Corrosion rate (mpy)	Protection power (Z%)*	Corrosion Potential (mv)
Control (Tap water)	5.361	-	-630
VCI-649	0.3569	93	-375
VCI-646	0.2827	95	-303
S-69	1.007	87	-378

- Our Next Gen corrosion inhibitor: Cortec VCI 649 (aka VpCI-649 BD)
 - We'll use it @ 1wt% concentration
- 0.36 mils/year or 7.62x10⁻³ mm/year
 - Measured electrochemically by Cortec
 - Carbon steel and "tap water"
- For Sunapee, this means changing HP filters every 3 ½ days
 - At best! HP storage is an aggressive environment, the corrosion rate will be higher

Study of the performance of the formulations 2, 3, and 4 in tap water. Concentration level 0.1% by mass.

Carbon Steel (Immersed)

	Time before corrosion (days)				
Material	Ambient Temperature	50°C			
VCI-649	40+	40+			
VCI-646	40+	40+			
S-69	40+	40+			

Carbon Steel (Half-immersed)

	Time before corrosion (days)				
Material	Ambient Temperature	50°C			
VCI-649	40+	20+			
VCI-646	40+	20+			
S-69	40+	20+			

Cortec VpCI & a galvanized steel cooling tower

Protection Ability Tested With Tafel Plots

Test Equipment

Potentiostat/Galvanostat "Versastat" with corrosion software model 352/252 SoftCorrTM

Zinc working electrode

Graphite counter electrode

SSCE reference electrode

Test Parameters

Tap water: pH = TDS = ppm, Conductivity = μS

CaCO₃ in Tap water: pH = TDS = ppm, Conductivity = μS

Polarization was applied 20 minutes after the working electrode was immersed in electrolyte

Sample	Corrosion Rate in Tap Water, mpy	Protection Ability, %	Corrosion Rate in 1000ppm CaCO ₃ Solution, mpy	Protection Ability, %
100ppm VpCI additive	1.06	86.5	0.24	87.2
Control	7.8	-	1.8	-

Linear Polarization Resistance (LPR) Study

Test Parameters

1000ppm VpCI was added into two different types of water

90:10 Deionized : Tap water, pH 6.63; Conductivity 183µS		Tap water, pH 7.44; Conductivity 356µS			
Sample	Corrosion Rate, mpy	Protection Ability, %	Sample	Corrosion Rate, mpy	Protection Ability, %
Water with VpCI	0.2242	89	Water with VpCI	0.3924	98
Control Water	2.061	-	Control Water	17.74	

Immersion Corrosion Test

Test Parameters

Immersion at 40°C for 10 days

Test Solutions

VpCI was added at 25wt% to two different water treatment program formulas (TF 1 and TF 2) both containing a blend of antiscalants (phosphates, maleates, phosphonates, acrylates) and azoles. These mixtures were then added to tap water at 2000ppm

Material	Protection Ability, %
TF 1 + VpCI additive	94.3
TF 2 + VpCI additive	94
TF 1	74
TF 2	31
Control (tap water)	

Testing In Pilot Cooling Tower

Test Equipment

RSD Towers, Model 005 Cooling Tower

16 GPM recirculation rate, 1.5 inch inlet and outlet diameter

Test Parameters

45-50°C tap water with 2.3-2.5 cycles of concentration

pH = 8.6-8.8, TDS = 1250-1300ppm, Conductivity = $1850-2000\mu$ S

Continuously treatment of 250ppm for 1 week, 100ppm for 1 week and then 50ppm during the following 6 weeks

Solution Tested	Corrosion Rate, mpy	Protection Ability, %
TF 1 + VpCI additive	0.59	89
TF 1	4.49	سر . اس

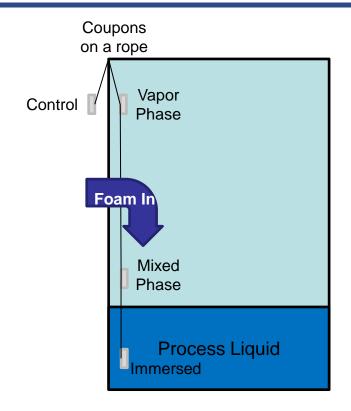
Proprietary

Qualitative Inhibited Corrosion Rates

Table 4: Qualitative Classification of Corrosion Rates in Recirculating Cooling Water—mpy					
Metal/ Classification	Low Carbon Steel	Copper Alloys	Galvanized Steel	Aluminum	Stainless Steel
Excellent	<0.1	<0.1	< 2.0	<0.5	<0.1
Good	1.0-3.0	0.0-0.2	2.0-4.0	0.5-2.0	
Fair	3.0-5.0	0.2-0.3	4.0-8.0	2.0-5.0	
Poor	5.0-10.0	0.3-0.5	8.0-10.0	5.0-10.0	
Unacceptable	>10.0	>0.5	>10.0	> 10.0	>0.14

Table 6. Qualitative Classification of Corrosion Rates of Carbon Steel in a Cooling Water System					
Corrosion Rate (mm/Year)	Mils /Year	Classification			
< 0.03	1.2	Excellent			
0.03 - 0.08	1.2 - 3.2	Very good			
0.08 - 0.13	3.2 - 5.2	Good			
0.13 - 0.20	5.2 – 8	Moderate			
0.20 - 0.25	8 – 10	Poor			
>0.25	>10	Very poor			

 Generally, the best inhibitors limit corrosion to around 1 mil/year or less


Metal/ Classification	Low Carbon Steel	Copper Alloys	Stainless Steel
Excellent	< 0.2	<0.1	<0.1
Good	0.2-0.5	0.1-0.3	
Fair	0.5-1.0	0.3-0.5	
Poor	> 1.0	>0.5	>0.1

Metal	Corrosion rate (mpy)	Comment
Carbon Steel	0—2	Excellent inhibition
	2—3	Generally acceptable for all systems
	3—5	Fair
	5—10	Unacceptable, migrating corrosion products may cause fouling
Copper	0—0.1	Excellent inhibition
	0.2—0.5	Generally acceptable
	0.6—1.0	Fair
	>1	Unacceptable
Admirality	0—0.2	Generally safe for HX tub- ing and mild steel
	0.2—0.5	High rate and may en- hance corrosion of mild steel
	>0.5	Unacceptably high, significantly affects mild steel

Racetrack & VpCI-649 BD Corrosion

- Pictured: After 10 days, process liquid of 1% VpCI-649 BD & 1% Biosoft D-40 in carbon filtered tap water.
- For reference, the previous process liquid, Quintolubric 807-WP & Biosoft, did not exhibit any visual level of corrosion i.e. liquid did not change color, for over 6 months
- X70 steel coupons hanging inside process tank on plastic twine
 - Coupons blasted, cleaned then rinsed with fresh VpCI-649BD based process liquid before testing

Racetrack & VpCI-649 BD Corrosion

Control – In lab air, outside of process tank

Vapor Phase – In "dry" top half of process tank

Mixed Phase – In splash zone of process tank

Immersed – In liquid zone of process tank

 Pictured above: After 10 days, coupons in a fresh process liquid solution of 1% VpCI-649 BD & 1% Biosoft D-40 in carbon filtered tap water. Vapor & Mixed Phase coupons exposed to foam cycles – foam filling tank during test then receding during down times

Corrosion Prevention – 30 July 2012

Purpose: evaluate protection provided by coatings (epoxies, polyurethanes, etc.)

Procedure of Coating Corrosion Test Stand

- Preparing Coupons/Test Stand
 - Add coupons to holders, load into the test stand chamber
 - Bolt on end flanges
- Water Fill
 - Fill halfway with 3L of distilled water
- Air Fill
 - Fill the chamber with 2500 psi every weeknight
- Rotate
 - Chamber is rotated overnight every weeknight
- Vent
 - Chamber vented in the morning
- Examination
 - Coupons taken out and examined on Fridays
 - Removed from racks, photographed

Results & Conclusions

 Some coatings bubble, not from corrosion underneath, but from expanding permeated air aka decompression causes disbondment of the coating

Corrosion Prevention – 30 July 2012

4 failures after 5 weeks

Manufacturer	Castina	Description	Chemical Class	Tensile	Compressive	Darmachility El	on wation Handman
Manufacturer	Coating	Description	Chemical Class	Strength	Strength	< 0.003	ongation Hardness
Specialty Polymer Coatings	SP-2889		Epoxy/Erethane	42.7 MPa	1.56*10^4 PSI	(perm-in)	9.00%85 (Shore D)
Specialty Polymer	01 2000		Novolac (Phenol	72.7 WII U	1.00 10 41 01	(perm in)	3.007000 (GHere D)
Coatings	SP-9888		Formaldehyde Resin)				84 (Shore D)
Specialty Polymer			,			<0.003	,
Coatings	SP-2888		Epoxy/Erethane	44.86 MPa	1.56*10^4 PSI	(perm-in)	4.20%85 (Shore D)
Madison Chemical	CorroPipe					.20 Metric	75 +/- 5 (ASTM D-
Industries	3000 AM		Polyurethane			Perms	2240 Shore D)
Madison Chemical							80 (ASTM D-2240
Industries	MG120AM 300	0 AM	Epoxy-Polyurethane				Shore D)
							7159 of 113
Canhalina	Disaits 7450		Epoxy Coating, Polymerized				seconds (ASTM
Carboline	Plasite 7159 Polyurethance		with a polyamine curing agent				Method D4366-84)
	•	No other					
Tnemec	. ,	information given	Polyurethane Spray Elastomer				
Tnomes	Cloote Chield	Series F400	Dobarroo				
Tnemec	Elasto-Shield	(polyurea)	Polyurea				
Tnemec		Series F061	Cycloaliphatic Amine Epoxy				
Tnemec		G340	Modified Polyamine Epoxy				
Tnemec	Series 1E77						
THEINEC	OCHOS TETT						
	(Expoxoline						
Tnemec	Series 22)	Series 1E74	Modified Polyamine Epoxy				
Akzo Nobel	Corvel ECA- 1660	GREEN 10-6051	Modified Epoxy				
T/OU/ZU IZ		GREEN 10-0031	woulled Epoxy				

Corrosion Prevention – 30 July 2012

Madison Chemical Industries Failed Week 1

CorroPipe 3000 AM (Polyurethane)

Madison Chemical IndustriesFailed Week 1

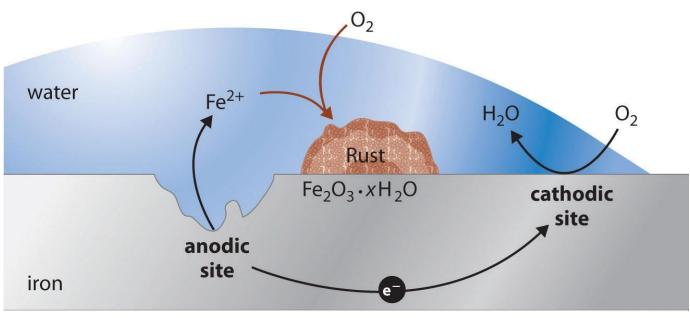
CorroPipe 3000 AM (Polyurethane)

Tnemec: Discontinued

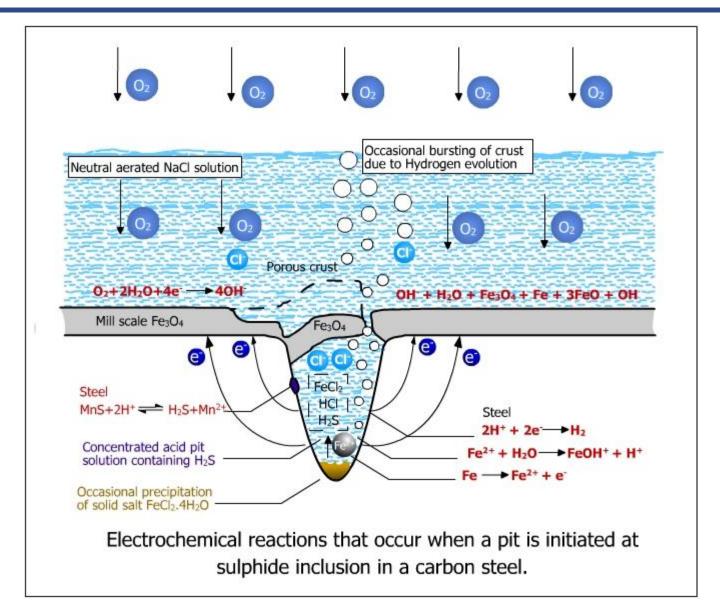
Failed Week 1

Tnemec

Elasto-Shield: Series 400 (Polyurea)

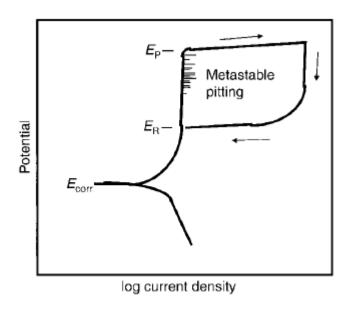

Failed Week 5
Series F061(Cycloaliphatic Amine Epoxy)

Proprietary & Confidential


Pitting corrosion

- Passive films failure local corrosive cell forms
 - Chlorides are main aggressor
- Does Q807WP act as a film?
- Will VpCl649BD?
 - Why did ours have chlorides in it?
- http://2012books.lardbucket.org/books/principles-of-general-chemistry-v1.0/s23-06-corrosion.html

Fe(s)
$$\rightarrow$$
 Fe²⁺(aq) + 2e⁻ $O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(I)$



LPR & Tafel Plots

- http://www.cosasco.com/corrosion-rate-instrument.html
- http://www.alspi.com/lprprobemenu.htm

Fig. 3 Schematic of a polarization curve showing critical potentials and metastable pitting region. *E*_P, pitting potential; *E*_R, repassivation potential; *E*_{corr}, corrosion potential. Source: Ref 1

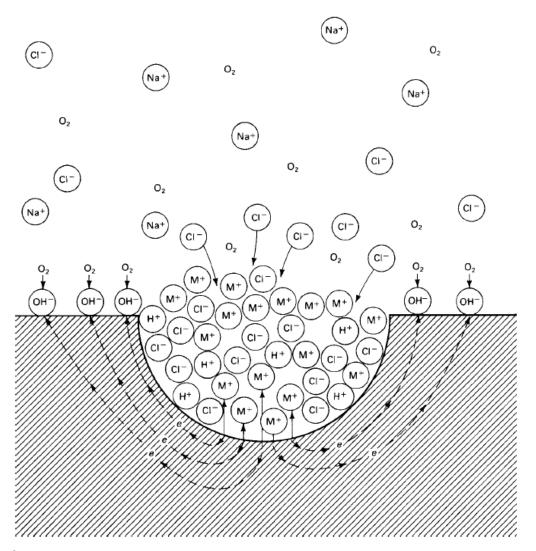


Fig. 2 Autocatalytic process occurring in a corrosion pit. The metal, M, is being pitted by an aerated NaCl solution. Rapid dissolution occurs in the pit, while oxygen reduction takes place on the adjacent metal surfaces.

Corrosion Filtration

- Sunapee Storage Bottles & Header
 - 900m² of internal surface area
- HP filters, FLT-620 & FLT-591
 - 360g dirt holding capacity & rust density ~ 5.5 g/cm³
 - 65 cm³ holding capacity
- \rightarrow 7.3x10⁻⁵ mm layer from storage of rust needed to load filter
- Rate Estimates
- Month: total time for corrosion
 - HP Filter changes on 10/23, 12/3, 1/14
 - 720 hours to fully loaded filter
 - 0.00089 mm/year estimated corrosion rate
- Week: filters loaded much sooner than we changed them
 - HP Filter changes on 10/23, 12/3, 1/14
 - 168 hours to fully loaded filter
 - 0.0038 mm/year estimated corrosion rate
- Example corrosion rates (oil pipelines)
 - 0.4-10.9 mm/year, uninhibited
 - 0.05-0.1 mm/year, inhibited
 - Conflicting Views: CO2 Corrosion Models, Corrosion Inhibitor Availability Philosophies, and the Effect on Subsea Systems and Pipeline Design
- Supposing we had an inhibited 0.05 mm/year corrosion rate, we would need to change filters every 12 hours