The Foam Engine

Heat to Power Innovation

Alexander C. Bell, MEM

2014

Overview

- Objective
- What is the Foam Engine?
- The Opportunities
- The Incumbent: Organic Rankine Cycle
- ORC: Markets Served
- Why the Foam Engine?
- Pressure-Enthalpy (P vs. H) Graphs
- Pressure-Volume (P vs. V) Graphs
- ORC P vs. H
- Foam The Isothermal Fluid
- The Bell Cycle I Isothermal Flash Cycle
- And More...

Objective & Audience

This slidedeck aims to

- Gather material for provisional patent application
- Prepare for a Small Business Innovation Research (SBIR) Phase 1 grant proposal
 - Gather thoughts & materials needed in proposal
 - Pitch concept to build team, advisory board(s), support from companies
- As a result, some material will be technical

What is the Foam Engine?

The Foam Engine is

- A Heat Engine Turns Heat into Electricity
 - Just like most power plants e.g. coal, nuclear

- Steam Rankine Cycles (above) are typically used for heat sources >350°C and <600°C
- Organic Rankine Cycles are used for heat sources <350°C
- The Foam Engine is best suited for <350°C

The Opportunities

= 2,000,000 GWh / Year in U.S. Alone

Incumbent Technology: Organic Rankine Cycle

• ORC: Dominant player in waste/low-grade heat-to-power markets

Proprietary & Confidential

Organic Rankine Cycle: Global Markets Served

Proprietary & Confidential

UC Berkeley

Market Appetite

UC Berkeley

Proprietary & Confidential

Markets Growth & Competition

Market	Projected	Competitive	Available
Segment	Growth	Pressure	Incentives
Geothermal	9.5%	>50	US Federal &
	CAGR	Installations	EU Incentives
Metals	< 5.5%	<15	US State-by-State &
Manufacturing	CAGR	Installations	EU Incentives
Food & Beverage	3.5%	<15	US State-by-State &
	CAGR	Installations	EU Incentives

Why The Foam Engine?

The Foam Engine is

- 39% more thermally efficient aka 39% more power from the same heat source compared to ORC
 - The Foam Engine achieves 94% of the Carnot limit
 - ORC: 67% of Carnot limit
- The simplicity of ORC
 - Expander, Recuperator, Condenser, Pump, Preheater
 - Sans ORC boiler
- Other competitors: OFC, Kalina Cycle
 - More complicated
- Easier to achieve >90% isothermal efficiency than >80% isentropic
- Demonstrated isothermal expansion based on inherent two-phase flows
- SBIR Phases for R&D and prototype development

Pressure-Enthalpy Graphs

- Standard graph for typical turbine (adiabatic/isentropic) processes
- Quickly & easily read enthalpy changes
- Enthalpy changes measure heat in, work out, heat out, and/or work in

Pressure-Volume Graphs

- Isothermal Work output is not represented on a Pressure-Enthalpy graph
- $W = \int P dV$
 - The area under the curve on a Pressure-Volume graph is Isothermal Work out
- Adiabatic / Istentropic work is equivalent on Pressure-Enthalpy or Pressure-Volume graphs – see below

Organic Rankine Cycle – P vs. H

- Honeywell Genetron
- 150°C to 45°C
- 2.758 to
 0.29 MPa
- Work_{out,net}: 42 kJ/kg
- Heat_{In}: 250 kJ/kg
- Efficiency: 16.7%

Foam – The Isothermal Fluid

• Leveraging proven Isothermal foam expansion as demonstrated by

- 1.5MW reciprocating piston isotherm compressor/expander
 - Operational over 1 year
 - Ideal heat transfer achieved over full speed range: 90-120 rpm
- SustainX Patents
 - US 8,806,866 & 8,539,763: Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
 - In various embodiments, foam is compressed to store energy and/or expanded to recover energy.
- The Foam Engine utilizes a 2 (or more) liquid mixture to make foam
 - Working Fluid(s): this liquid will be vaporized with heat/expansion
 - Carrier Liquid: this liquid provides heat capacity & transfer necessary for isothermal expansion
 - A surfactant stabilizes the vaporized Working Fluid & Carrier Liquid mixture as a foam

The Bell Cycle I – Isothermal Flash Cycle

The Bell Cycle I – Isothermal Flash Cycle

- 150°C to 45°C •
- 3.4 to 0.29 MPa
- Work_{out,net}: 59 kJ/kg
- Heat_{in,net}: 253 kJ/kg

• Efficiency: 23.3%

(Carnot efficiency: 24.8%)

The Foam Engine - Expander

- Positive Displacement, non-turbomachinery
 - Low speed (~100 rpm) initially; push limits to 100s of rpms
 - Long term goal: 1800 rpm
- Piston
- Rotary Engines (Wankel, Quasiturbine)
- Vane (Vengeance)
- Scroll
- Screw

The Foam Engine – Heat Exchangers

- Preheater
- (Boiler)
- Condenser
- Recuperator

What's Needed

- Market Analysis
- Who's willing to pay how much for which application
 - the Foam Engine can be tailored to fit better
- Cost Analysis
- Equipment & Integration costs
- Technical Risk Mitigation
 - Expander piston, vane, screw, scroll how fast, how big can we go? Can non-piston types handle 2 phases? Efficient enough?
 - Heat Exchangers (boiler, condenser, recuperator) better, indifferent or worse with mixed liquids/foam?
 - Pump will pumping emulsions be problematic?
 - Foam acts like a viscous liquid pressure drops too high?
- Process Design selection of operating conditions, fluids, projected inputs/outputs
- Component Selection
- Cost Modeling
- Market, Sales, Commercialization, Business Model

SBIR Outline

- The National Science Foundation's SBIR Phase 1 grant provides up to \$150,000 for 6 months of research and development
- NSF Solicitation: Chemical and Environmental Technologies (CT7)
 - Sustainable Technologies for Energy Efficiency, Capture, Storage and Use
- Proposals due by Dec 2nd

- SBIR Proposal Structure
 - Project Description
 - Identification and Significance of the Innovation
 - Background and Phase 1 Technical Objectives
 - Technology and Company/Team Backgrounds
 - Commercial and Technical Feasibility
 - Technical Objectives
 - Phase 1 Research Plan
 - Proposed Concept
 - Preliminary Results
 - Tasks & Objectives
 - Timeline & Budget
 - Commercial Potential
 - Market Opportunity
 - Product, Technology, Competition
 - Company/Team
 - Financing and Revenue Model
 - Benefit to Public
 - References Cited
 - Biographical Sketches
 - Budget
 - Current and Pending Support
 - Facilities, Equipment and Other Resources
 - Special Info/Supplementary Docs

SBIR Milestones

- Foamability
 - Water + refrigerant + surfactant = foam?
 - Will it foam? What's the texture? Surfactant deactivated by hydrocarbon? Emulsion vs. solution?
 - Try various refrigerants, various surfactants buy/get samples
 - Small scale, pressure & temperaturevariable foam chamber
 - Drop pressure, flash/heat vaporize refrigerant, observe foam
- Model Process
- Expander search find
- Components Specification
 - Cost projection w/ scale
- Small (10-100kW) Market search

Technology Development

- Bootstrap
- Technology Feasibility SBIR phase 1: \$150K; 6 months (Q2 2015)
 - SBIR phase 1B (\$30K), if \$60K outside money joins; +6 months
- Small prototype (1-10kW) SBIR phase 2: \$750K; up to 2 years
 - SBIR phase 2B: \$500K to matching outside funds; +up to 2 years
- Small demonstration (10-100kW)
 - Fielded
- Sales to 100s kW market?
- Develop to MW markets?

Development Contingency

- Miss SBIR phase 1
- Garage development
 - Foamability
 - Models of organics cycles

- Licensing
- Partnerships Joint ventures
 - Expander
 - Heat source
- Acquisition
- Get to revenue...
- Are there large enough margins at small scale to support large scale development?

Process Design

- Excel & Matlab
 - Mid to Long term: Simscape modeling, Simulink controls
- Realistic performance prediction
 - Power output, thermal efficiency, exergy utilization
 - Required component sizes
- Trade studies
 - Fluid choices
 - Subcooling, superheating
- Application optimization

Alexander C. Bell, MEM

- SustainX's "Foam Guy"
 - Lead 3 year foam development from inception to successful 1.5 MW implementation
 - Researched & developed foam generation, rheology, thermodynamics, heat transfer, measurement, separation, chemistry
 - Test Stand designer, builder, operator, and data analyzer
 - Heat Transfer test stand NSF SBIR funded

- Master of Engineering Management Thayer School of Engineering and Tuck School of Business
 - Focus on Energy and Entrepreneurship
- Bachelor of Science, Chemical Engineering University of New Hampshire
 - Focus on Energy

Who's Needed

- Need to build a team
 - Market Analyzer
- Cost Analyzer
- Operations
- Commercialization
- Finance
- Accounting
- Submit SBIR Phase 1 proposal:
- chance at \$150k

Appendix

Bell Cycles

- I Isothermal saturated liquid flash expansion (Trilateral/Organic Flash Cycle)
 - One working fluid e.g. water, R245fa, etc.
- II Isothermal vapor expansion (Rankine)
 - One working fluid e.g. water, R245fa, etc.
- III Isothermal vapor expansion (Kalina)
 - Two miscible working fluids e.g. ammonia & water
- IV Trans/Supercritical expansion

The Bell Cycle II – Isothermal Rankine Cycle

Bottoming or LP Rankine Cycle

Isentropic Expansion (top)

- Work_{out} = 762 kJ/kg
- Heat_{in} = 3376 kJ/kg

Isentropic Expansion (bottom)

- Work_{out} = 1163 kJ/kg
- ReHeat_{in} = 878 kJ/kg

Isentropic Expansion (both)

- Work_{out} = 1925 kJ/kg
- Heat_{in} = 4254 kJ/kg
- η = 45.3%

Bell Cycle I – Isothermal Rankine

Isothermal Expansion

- Work_{out,net} = 976 kJ/kg
- ReHeat_{in} = 0
 kJ/kg

Bell Cycle I – Isothermal Rankine

Isothermal Expansion (bottom)

- Work_{out,net} = 976 kJ/kg
- ReHeat_{in} = 0 kJ/kg

Isentropic Expansion (top) + Isothermal Expansion (bottom)

- Work_{out,net} = 1738 kJ/kg
- Heat_{in} = 3683 kJ/kg
- **η** = 47.2%

The Kalina Cycle

- Zeotropics
- Ammonia-Water

Organic Flash Cycle

